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A concise enantioselective total synthesis of (2S,30R,70Z)-N-(30-hydroxy-70-tetradecenoyl)-homoserine
lactone is described. Key feature of this protocol is a catalytic asymmetric hydrogenation and a prophe-
nol–zinc-catalyzed diazo addition to imine reaction as genesis of chirality. Moreover, flexibility is built in
the synthesis to generate enantioenriched analogs using catalytic amount of enantioenriched C2-sym-
metric ligands.

� 2010 Elsevier Ltd. All rights reserved.
The quorum-sensing chemical entity N-acyl-homoserine lac-
tone (AHL) is found to be responsible for intercellular communica-
tion in Gram-negative bacteria.1 This chemical motif also induces
gene encoding enzymes involved in their own synthesis, hence of-
ten called as autoinducer.2 Additionally, the AHL molecule displays
an unusual property of growth inhibition of Rhizobium bacteria
which harbor the conjugative sym plasmid pRL1JI.3 Various
acyl-homoserine lactones have been identified and remarkably
all contain a common structural motif, which is homoserine lac-
tone possessing absolute configuration S with varying pendant
saturated and unsaturated carbon chains.4 Among them,
(2S,30R,70Z)-N-(30hydroxy-70-tetradecenoyl)-homoserine lactone 1
showed impressive inhibitory activity against the growth of R.
leguminosarum RBL5523.5 Recently, Yajima et al. not only achieved
the unambiguous total synthesis of natural (2S,30R,70Z)-N-(30-hy-
droxy-70-tetradecenoyl)-homoserine lactone 1 but also confirmed
the absolute configuration of the natural product as 2S,30R. Along
this vein, all possible stereoisomers have been synthesized and
established stereochemistry-activity relationship of this quorum-
sensing pheromone. Intriguingly, the two stereogenic centers were
installed by employing chiral pool starting materials.5

With our continued interest in developing catalytic routes to
bioactive small molecules,6 herein, we report a concise flexible
route for the synthesis of natural (2S,30R,70Z)-N-(30-hydroxy-70-tet-
radecenoyl)-homoserine lactone 1 based on two catalytic steps: (a)
prophenol–zinc-catalyzed nucleophilic addition of a-diazoacetate
ll rights reserved.

: +91 40 27193275.
araswamy).
to imine, and (b) catalytic asymmetric transfer hydrogenation
(CATHy™) reaction. Our retro synthetic analysis is delineated in
Scheme 1.

Initially, we envisioned that the stereogenic center of (S)-homo-
serine lactone hydrochloride 3 could be accessed through a proph-
enol–zinc-catalyzed nucleophilic addition of a-diazoacetate 9 to
N-Boc-furylimine 8. To this end, we have appraised the recently
reported Trost-reaction7 conditions for this transformation.
Accordingly, the catalyst generated from 5 mol% of (S,S)-prophe-
nol/10 mol% of (Et)2Zn in THF was treated with ethyl diazoacetate
(EDA) 9 (1.0 equiv) and N-Boc-imine 8 (1 equiv) at 0 �C for 12 h.
The anticipated product 10 was furnished with 62% yield.8 An
effort to resolve the racemic diazoamine 10 on the chiral stationery
phase was not successful. Then, hydrogenation followed by reduc-
tion of 10 afforded 7 in 87% yield. Fortunately, compound 7 was
resolved after derivatization with S-MTPA acid. The enantiomeric
ratio of corresponding S-MTPA ester was established by HPLC on
the chiral stationery phase and found to be 92:8.

Deprotection of Boc protecting group under acidic conditions
followed by oxidative cleavage of the furyl moiety and subsequent
purification over Dowex 50WX8-400 led to 11 in 62% yield.9 The
optical data of 11 were in full agreement with that reported in
the literature ½a�25

D = �7.4 (c = 0.18, H2O) {lit.10 ½a�23
D = �8.0 (c = 6,

H2O)} thus, the absolute configuration of the stereogenic center
was assigned as S. Finally, 11 was refluxed in aqueous HCl (6N)
resulting in 3 65% yield (Scheme 2).11

Having prepared (2S)-homoserine lactone hydrochloride 3, we
next proceeded to synthesize the ethyl-(S)-30-hydroxy(70Z)-tetra-
decenoate 2. The reaction of triphenylphosphonium salt 6 and
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benzyloxy pentanal 5 in THF:DMSO (2:1) with n-BuLi generated
(Z)-olefin 12 (Z/E 99:1, judged by 13C NMR) in 84% yield.12 The
compound 12 was subjected to reductive debenzylation (Li/naph-
thalene) followed by oxidation with Dess–Martin Periodinane fur-
nished the aldehyde 13 in 90% yield. The aldehyde 13 was
converted into b-ketoester 4 in 94% yield using ethyl diazoacetate
in the presence of catalytic amount of SnCl2.13 Next, we focused on
reduction of prochiral keto functionality of ester 2. Initially, we had
evaluated Noyori’s catalytic asymmetric transfer hydrogenation in
the presence of catalyst A and 2-propanol as the hydrogen donor.14

The reduction of compound 2 by using 1 mol% of Ru-catalyst A and
7 mol% of KOH in 2-propanol at 80 �C for 6 h led to a low yield of
desired product 2 (10%). However, the same substrate was exposed
to formic acid:triethylamine (2:5) as a hydrogen source using
1 mol% of Ru-catalyst A in EtOAc at 50 �C for 48 h affording the
alcohol 2 in 59% isolated yield with 90:10 enantiomeric ratio.15,16

The optical purity and absolute configuration of new stereogenic
center was assigned on the basis of sign of specific rotation with
comparison of the literature data.5 The hydroxy ester 2 was sapon-
ified to give corresponding acid 14 which then condensed with
OBn
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hydrochloride salt of 3 employing EDCI (1-ethyl-3-(3-dimethyl-
aminopropyl) carbodiimide) with HOBt (1-hydroxy-benzotriazole)
and Et3N. The coupled product 1 was isolated in 72% yield. The
spectral and analytical data of 1 were in full agreement with
reported data ½a�25

D = �11.9 (c = 0.35, CHCl3). {lit.5 ½a�25
D = �12.3

(c = 0.53, CHCl3)} (Scheme 3).
In conclusion, we have demonstrated a concise enantioselective

total synthesis of (2S,30R,70Z)-N-(30-hydroxy-70-tetradecenoyl)-
homoserine lactone, which was achieved using a catalytic asym-
metric hydrogenation and a prophenol–zinc-catalyzed diazo
addition to imine reaction as genesis of chirality. Further, this route
will allow synthesizing all possible stereoisomers using an anti-
pode of C2-symmetric chiral template of corresponding ligands.
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