Tetrahedron Letters 51 (2010) 6500-6502

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Enantioselective synthesis of (2*S*,3'*R*,7'*Z*)-*N* -(3'-hydroxy-7'-tetradecenoyl)-homoserine lactone

Gullapalli Kumaraswamy*, Neerasa Jayaprakash

Organic Division-III, Indian Institute of Chemical Technology (CSIR), Tarnaka, Hyderabad 500607, India

ARTICLE INFO

ABSTRACT

Article history: Received 30 August 2010 Revised 26 September 2010 Accepted 29 September 2010 Available online 7 October 2010

Keywords: N-Acyl-homoserine lactone Quorum-sensing Prophenol-zinc-catalyzed reaction Asymmetric transfer hydrogenation

Ethyl diazoactate

The quorum-sensing chemical entity N-acyl-homoserine lactone (AHL) is found to be responsible for intercellular communication in Gram-negative bacteria.¹ This chemical motif also induces gene encoding enzymes involved in their own synthesis, hence often called as autoinducer.² Additionally, the AHL molecule displays an unusual property of growth inhibition of Rhizobium bacteria which harbor the conjugative sym plasmid pRL1II.³ Various acvl-homoserine lactones have been identified and remarkably all contain a common structural motif, which is homoserine lactone possessing absolute configuration S with varying pendant saturated and unsaturated carbon chains.⁴ Among them, (2S,3'R,7'Z)-N-(3'hydroxy-7'-tetradecenoyl)-homoserine lactone 1 showed impressive inhibitory activity against the growth of R. leguminosarum RBL5523.⁵ Recently, Yajima et al. not only achieved the unambiguous total synthesis of natural (2S,3'R,7'Z)-N-(3'-hydroxy-7'-tetradecenoyl)-homoserine lactone 1 but also confirmed the absolute configuration of the natural product as 2S,3'R. Along this vein, all possible stereoisomers have been synthesized and established stereochemistry-activity relationship of this quorumsensing pheromone. Intriguingly, the two stereogenic centers were installed by employing chiral pool starting materials.⁵

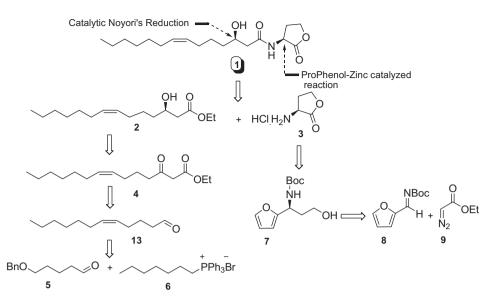
With our continued interest in developing catalytic routes to bioactive small molecules,⁶ herein, we report a concise flexible route for the synthesis of natural (2S,3'R,7'Z)-N-(3'-hydroxy-7'-tet-radecenoyl)-homoserine lactone **1** based on two catalytic steps: (a) prophenol–zinc-catalyzed nucleophilic addition of α -diazoacetate

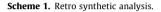
A concise enantioselective total synthesis of (2S,3'R,7'Z)-N-(3'-hydroxy-7'-tetradecenoyl)-homoserine lactone is described. Key feature of this protocol is a catalytic asymmetric hydrogenation and a prophenol-zinc-catalyzed diazo addition to imine reaction as genesis of chirality. Moreover, flexibility is built in the synthesis to generate enantioenriched analogs using catalytic amount of enantioenriched C_2 -symmetric ligands.

© 2010 Elsevier Ltd. All rights reserved.

to imine, and (b) catalytic asymmetric transfer hydrogenation (CATHyTM) reaction. Our retro synthetic analysis is delineated in Scheme 1.

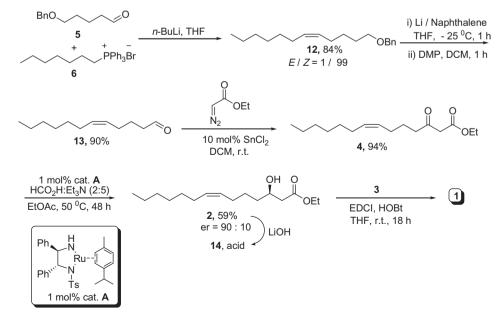
Initially, we envisioned that the stereogenic center of (*S*)-homoserine lactone hydrochloride **3** could be accessed through a prophenol–zinc-catalyzed nucleophilic addition of α -diazoacetate **9** to *N*-Boc-furylimine **8**. To this end, we have appraised the recently reported Trost-reaction⁷ conditions for this transformation. Accordingly, the catalyst generated from 5 mol% of (*S*,*S*)-prophenol/10 mol% of (Et)₂Zn in THF was treated with ethyl diazoacetate (EDA) **9** (1.0 equiv) and *N*-Boc-imine **8** (1 equiv) at 0 °C for 12 h. The anticipated product **10** was furnished with 62% yield.⁸ An effort to resolve the racemic diazoamine **10** on the chiral stationery phase was not successful. Then, hydrogenation followed by reduction of **10** afforded **7** in 87% yield. Fortunately, compound **7** was resolved after derivatization with *S*-MTPA acid. The enantiomeric ratio of corresponding *S*-MTPA ester was established by HPLC on the chiral stationery phase and found to be 92:8.


Deprotection of Boc protecting group under acidic conditions followed by oxidative cleavage of the furyl moiety and subsequent purification over Dowex 50WX8-400 led to **11** in 62% yield.⁹ The optical data of **11** were in full agreement with that reported in the literature $[\alpha]_D^{25} = -7.4$ (c = 0.18, H₂O) {lit.¹⁰ $[\alpha]_D^{23} = -8.0$ (c = 6, H₂O)} thus, the absolute configuration of the stereogenic center was assigned as *S*. Finally, **11** was refluxed in aqueous HCl (6*N*) resulting in **3** 65% yield (Scheme 2).¹¹


Having prepared (2*S*)-homoserine lactone hydrochloride **3**, we next proceeded to synthesize the ethyl-(*S*)-3'-hydroxy(7'*Z*)-tetradecenoate **2**. The reaction of triphenylphosphonium salt **6** and

^{*} Corresponding author. Tel.: +91 40 27193154; fax: +91 40 27193275. *E-mail address:* gkswamy_iict@yahoo.co.in (G. Kumaraswamy).

^{0040-4039/\$ -} see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.09.138



5 mol% Boc ProPhenol 'nн 10 mol% (Et)₂Zn 8 + C OFt 4A⁰ THE Ñ₂ 0⁰C, 12 h 10,62% iii) TFA, DCM i) H₂, 10% Pd/C 0 °C to r.t. 7 iv) O₃, 10 min. ii) LAH, THF 87% er = 92 : 8 NH_2 v) 6N HC **3**. 65% HO reflux. 1 h

11, 62%

Scheme 2. Homoserine lactone hydrochloride 3.

benzyloxy pentanal 5 in THF:DMSO (2:1) with n-BuLi generated (Z)-olefin **12** (Z/E 99:1, judged by ¹³C NMR) in 84% yield.¹² The compound 12 was subjected to reductive debenzylation (Li/naphthalene) followed by oxidation with Dess-Martin Periodinane furnished the aldehyde 13 in 90% yield. The aldehyde 13 was converted into β -ketoester **4** in 94% yield using ethyl diazoacetate in the presence of catalytic amount of SnCl₂.¹³ Next, we focused on reduction of prochiral keto functionality of ester 2. Initially, we had evaluated Noyori's catalytic asymmetric transfer hydrogenation in the presence of catalyst **A** and 2-propanol as the hydrogen donor.¹⁴ The reduction of compound 2 by using 1 mol% of Ru-catalyst A and 7 mol% of KOH in 2-propanol at 80 °C for 6 h led to a low yield of desired product 2 (10%). However, the same substrate was exposed to formic acid:triethylamine (2:5) as a hydrogen source using 1 mol% of Ru-catalyst A in EtOAc at 50 °C for 48 h affording the alcohol 2 in 59% isolated yield with 90:10 enantiomeric ratio.^{15,16} The optical purity and absolute configuration of new stereogenic center was assigned on the basis of sign of specific rotation with comparison of the literature data.⁵ The hydroxy ester **2** was saponified to give corresponding acid 14 which then condensed with

Scheme 3. Synthesis of title compound 1.

hydrochloride salt of **3** employing EDCI (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) with HOBt (1-hydroxy-benzotriazole) and Et₃N. The coupled product **1** was isolated in 72% yield. The spectral and analytical data of **1** were in full agreement with reported data $[\alpha]_D^{25} = -11.9$ (c = 0.35, CHCl₃). {lit.⁵ $[\alpha]_D^{25} = -12.3$ (c = 0.53, CHCl₃)} (Scheme 3).

In conclusion, we have demonstrated a concise enantioselective total synthesis of (2S,3'R,7'Z)-N-(3'-hydroxy-7'-tetradecenoyl)-homoserine lactone, which was achieved using a catalytic asymmetric hydrogenation and a prophenol–zinc-catalyzed diazo addition to imine reaction as genesis of chirality. Further, this route will allow synthesizing all possible stereoisomers using an antipode of C_2 -symmetric chiral template of corresponding ligands.

Acknowledgments

We are grateful to Dr. J.S. Yadav, Director, IICT, for his constant encouragement. The financial support was provided by the DST, New Delhi, India (Grant No: SR/SI/OC-12/2007) and CSIR (New Delhi) is gratefully acknowledged for awarding the fellowship to N.J. Thanks are also due to Dr. G.V.M. Sharma for his support.

Supplementary data

Supplementary data (experimental procedures, spectral data and copies of spectras for all compounds) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.09.138.

References and notes

- (a) Whitehead, N. A.; Barnard, A. M. L.; Slater, H.; Simpson, N. J. L.; Salmond, G. P. C. *FEMS Microbiol. Rev.* **2001**, *25*, 365–404; (b) Schripsema, J.; de Rudder, K. E. E.; van Vliet, T. B.; Lankhorst, P. P.; de Vroom, E.; Kijne, J. W.; van Brussel, A. A. N. *J. Bacteriol.* **1996**, *178*, 366–371.
- Fuqua, W. C.; Winans, S. C.; Greenberg, E. P. J. Bacteriol. 1994, 176, 269–275.
 (a) Hirsch, P. R. J. Gen. Microbiol. 1979, 113, 219–228; (b) Gray, K. M.; Pearson, J.
- (a) Hirsch, P. R. J. Gen. Microbiol. **1979**, *113*, 219–228; (b) Gray, K. M.; Pearson, J. P.; Downie, J. A.; Boboye, B. E. A.; Greenberg, E. P. J. J. Bacteriol. **1996**, *178*, 372–376; (c) Lithgow, J. K.; Willkinson, A.; Handman, A.; Rodelas, B.; Wisniewski-Dye, F.; Williams, P.; Downie, A. J. Mol. Microbiol. **2000**, *37*, 81–97; (d) Blosser-Middleton, R. S.; Gray, K. M. J. Bacteriol. **2001**, *183*, 6771–6777.
 (a) Cao, J.-G.; Meighen, E. A. J. Bacteriol. **1993**, *175*, 3856; (b) Chhabra, S. R.;
- (a) Cao, J.-G.; Meighen, E. A. J. Bacteriol. **1993**, *175*, 3856; (b) Chhabra, S. R.; Harty, C.; Hooi, D. S. W.; Daykin, M.; Williams, P.; Telford, G.; Prittcchard, D. I.; Bycroft, B. W. J. Med. Chem. **2003**, *46*, 97–104; (c) Chhabra, S. R.; Stead, P.; Bainton, N. J.; Salmond, G. P. C.; Stewart, G. S. A. B.; Williams, P.; Bycroft, B. W. J. Antibiot. **1993**, *46*, 441–454; (d) Janssens, J. C. A.; Metzger, K.; Daniels, R.; Ptacek, D.; Verhoeven, T.; Habel, L. W.; Vanderleyden, J.; De Vos, D. E.; De Keersmaecker, S. C. J. Appl. Environ. Microbiol. **2007**, *73*, 535–544; (e) Pomini, A. M.; Manfio, G. P. M.; Araújo, W. L.; Marsaioli, A. J. J. Agric. Food. Chem. **2005**, *53*, 6262–6265; (f) Pomini, A. M.; Paccola-Meirelles, L. D.; Marsaioli, A. J. J. Agric. Food. Chem. **2007**, *55*, 1200–1204.
- Yajima, A.; Brussel, A. N. V.; Schripsema, J.; Nukada, T.; Yabuta, G. Org. Lett. 2008, 10, 2047–2050.
- 2000, 19, 2017 2005, 19, 2017 2005, and Krishna, D.; Santhakumar, K. Tetrahedron: Asymmetry 2010, 21, 544–548; (b) Kumaraswamy, G.; Ramakrishna, G.; Naresh, P.; Sridhar, B.; Jagadeesh, B.; Sridhar, B. J. Org. Chem. 2009, 74, 8468– 8471; (c) Kumaraswamy, G.; Jayaprakash, N.; Sridhar, B. J. Org. Chem. 2010, 75,

2745–2747; (d) Kumaraswamy, G.; Sadaiah, K.; Ramakrishna, D. S.; Naresh, P.; Sridhar, B.; Jagadeesh, B. *Chem. Commun.* **2008**, 5324–5326; (e) Kumaraswamy, G.; Padmaja, M.; Markondaiah, B.; Jena, N.; Sridhar, B.; Udaya Kiran, M. *J. Org. Chem.* **2006**, 71, 337–340; (f) Kumaraswamy, G.; Padmaja, M. *J. Org.* **Chem. 2008**, 73, 5198–5201; (g) Kumaraswamy, G.; Markondaiah, B. *Tetrahedron Lett.* **2007**, 48, 1707–1709; (h) Kumaraswamy, G.; Markondaiah, B. *Tetrahedron Lett.* **2008**, 49, 327–330.

- Trost, B. M.; Malhotra, S.; Fried, B. A. J. Am. Chem. Soc. 2009, 131, 1674–1675.
 In place of ethyl diazoacetate, benzyl diazoacetate was employed. But, the resulting product showed inferior enantioselectivity (er 87:13 by chiral HPLC, Chiralpak AD-H column: 95/5 *n*-hexane/*i*-PrOH, flow rate 0.8 mL/min,
- λ = 254 nm, τ_{major} = 31.9 min, τ_{major} = 34.7 min). 9. Enders, D.; Vrettou, M. Synthesis **2006**, *13*, 2155–2158.
- Boyle, P. H.; Davis, A. P.; Dempsey, K. J.; Hosken, G. D. Tetrahedron: Asymmetry 1995, 6, 2819–2828.
- (a) Koch, T.; Buchardt, O. Synthesis 1993, 1065–1067; (b) Natelson, S.; Natelson, E. A. Microchem. J. 1989, 40, 226–232; (c) Son, J.-K.; Woodard, R. W. J. Am. Chem. Soc. 1989, 111, 1363–1367; (d) Baldwin, J. E.; North, M.; Flinn, A. Tetrahedron 1988, 44, 637–642; (e) Wang, M.-C.; Zhang, Q.-J.; Zhao, W.-X.; Wang, X.-D.; Ding, X.; Jing, T.-T.; Song, M.-P. J. Org. Chem. 2008, 73, 168–176; (f) Seela, F.; Cramer, F. Chem. Ber. 1976, 109, 82–89.
- 12. Sonnet, P. E. Org. Prep. Proced. Int. 1974, 6, 269-273.
- 13. Holmquist, C. R.; Roskamp, E. J. J. Org. Chem. 1989, 54, 3258-3260.
- Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Nayori, R. J. Am. Chem. Soc. 1997, 119, 8738–8739.
- Hamada, T.; Torii, T.; Izawa, K.; Nayori, R.; Ikariya, T. Org. Lett. 2002, 4, 4373– 4376.
- 16. Experimental details for key steps, Compound 10: To a solution of (S,S)prophenol (378 mg, 0.512 mmol) in anhydrous THF (6 mL) was added a solution of diethylzinc (1.0 mL of a 1 M solution in hexane) at 0 °C. The reaction mixture was stirred at room temperature for 30 min. This solution was used as catalyst solution for the below reaction. An oven dried two-neck round bottomed flask was charged with activated 4 Å sieves, fitted with a septum, evacuated, flame dried, and purged with nitrogen. The flask was cooled to room temperature then furan-N-Boc-imine (2.0 g, 10.26 mmol) in THF (25 mL) and the catalyst solution (0.125 M) were added successively. The resulting reaction was cooled to 0 °C and ethyl diazoacetate (1.2 g, 10.26 mmol) was added dropwise. The resulting solution was stirred for 12 h; after which time, the reaction was then quenched with 0.5 M HCl (20 mL) and diluted with ethyl acetate (30 mL). The contents were extracted with ethyl acetate (3 \times 15 mL). The combined organic phases were concentrated and the residue was purified over silica column eluting with hexane/EtOAc = 95:5) to afford 1.96 g (62%) of **10** as yellow oil. $[\alpha]_{D}^{25} = -8.5$ (*c* = 0.45, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.33–7.36 (m, 1*H*, furan), 6.30–6.33 (m, 1*H*, furan), 6.26 (d, *J* = 3.1 Hz, 1*H*, furan), 5.65 (d, J = 7.5 Hz, 1H, CHNH), 5.35 (br s, 1H, H–N), 4.22 (q, J = 6.8 Hz, 2H, CO₂CH₂CH₃), 1.46 (s, 9H, C(CH₃)₃), 1.28 (t, J = 6.8 Hz, 3H, CH₃) ppm. ¹³C MR (75 MHz, CDCl₃): δ = 1546, 1510, 142.4, 110.5, 106.9, 61.0, 45.9, 28.2, 14.3 ppm. IR (KBr): v = 3364, 2092, 1685, 1521, 1163, 750, 632 cm⁻¹. MS (ESI) m_{z} : 332 (M+Na)³. HRMS: calcd for C₁₄H₁₉N₃O₅Na 332.1222; found 332.1232. Compound **2**: To a solution of **4** (500 mg, 1.86 mmol) in anhydrous EtOAc (5 mL) under argon was added HCOOH:Et₃N (2:5) mixture (0.25 mL) followed by the addition of Ru-catalyst A (0.011 g, 0.019 mmol, 1 mol %) which was predissolved in CH_2Cl_2 (2 × 1 mL). The resulting reaction mixture was heated to 50 °C for 48 h. After cooling the reaction mixture to room temperature, it was diluted with ethyl acetate (20 mL) and filtered through a pad of silica gel. The filtrate was concentrated in vacuo and the residue was subjected to silica gel flash column chromatography (5% EtOAc in hexane) to afford 298 mg (59%) of compound **2** as colorless oil. $[\alpha]_{25}^{25} - 11.3$ (*c* = 0.25, CHCl₃). {lit.⁵ $[\alpha]_{22}^{22} - 14.0$ (*c* 0.85, CHCl₃)). ¹H NMR (300 MHz, CDCl₃): δ = 5.25–5.38 (m, 2*H*, =CHCH₂), 4.16 (q, $J = 6.8 Hz, 2H, CO_2CH_2CH_3$), 3.89–3.99 (m, 1H, CHOH), 2.91 (br s, 1H, OH), 2.45 (dd, J = 2.9, 16.6 Hz, 1H, 2-CHH), 2.35 (dd, J = 2.9, 16.6 Hz, 1H, 2-CHH), 2.45 (dd, j = 2.5, 10.012, 11, 2-C111), 2.35 (dd, j = 2.5, 10.012, 11, 2-C111), 1.96–2.08 (m, 4H, 2 × CH₂), 1.23–1.57 (m, 15H, 5 × CH₂ and CH₃), 0.89 (t, j = 6.8 Hz, 3H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 173.1$, 130.5, 129.1, 67.9, 60.6, 41.3, 36.0, 31.7, 29.7, 29.0, 27.2, 26.9, 25.5, 22.6, 14.1, 14.0 ppm. IR (KBr): v = 3466, 2930, 2852, 2715, 1735, 1459, 1405, 1369, 1300, 1089, 1015, 725 cm^{-1} MS (ESI) m/z: 293 (M+Na)^{*}. HRMS: Calcd for C₁₆H₃₀O₃Na 293.2092; found 293.2093.